On the almost Gorenstein property of determinantal rings

Survey on the resolution

NAOKI TANIGUCHI

Melji University

The 38th Japan Symposium on Commutative Algebra

November 19, 2016

Introduction

• $2 \le t \le m \le n$ integers

Preliminaries

- $X = [X_{ij}]$ an $m \times n$ matrix of indeterminates over an infinite field k
- $S = k[X] = k[X_{ij} \mid 1 \le i \le m, 1 \le j \le n]$ the polynomial ring
- $I_t(X)$ the ideal of S generated by the $t \times t$ minors of the matrix X
- $R = S/I_t(X)$

Fact 1 ([2, 3])

- R is a Cohen-Macaulay normal domain
- dim R = mn (m (t 1))(n (t 1))
- $K_R = Q^{n-m} (-(t-1)m)$

where $Q = I_{t-1}(Y)R$ and $Y = [X_{ij}]$ is an $m \times (t-1)$ matrix obtained from X by choosing the first t-1 columns.

$$R$$
 is Gorenstein \iff $m=n$.

3 / 26

Therefore
$$R$$
 is level, $a(R) = -(t-1)n$, and

R is Gorenstein
$$\iff$$
 $m = n$.

Question 1.1

When do the determinantal rings satisfy almost Gorenstein property?

Theorem 1.2 (Goto-Takahashi-T, 2015)

Let $R = k[R_1]$ be a Cohen-Macaulay homogeneous ring with $d = \dim R > 0$. Suppose that R is not a Gorenstein ring and $|k| = \infty$. Then TFAE.

- (1) R is an almost Gorenstein graded ring and level.
- (2) Q(R) is a Gorenstein ring and a(R) = 1 d.

Corollary 1.3

 $R = S/I_t(X)$ is an almost Gorenstein graded ring $\iff m = n$, or $m \neq n$ and m = t = 2.

Set
$$M = R_{+}$$
. Then

$$R = k[X]/I_t(X) : AGG \implies R_M = (k[X]/I_t(X))_M : AGL$$

 $\iff k[[X]]/I_t(X) : AGL$

Survey on the resolution

Question 1.4

Does the implication

$$R_M = (k[X]/I_t(X))_M : AGL \implies R = k[X]/I_t(X) : AGG$$

hold true?

Theorem 1.5

Introduction

Suppose that k is a field of characteristic 0. Then TFAE.

- R is an almost Gorenstein graded ring.
- R_M is an almost Gorenstein local ring.
- Either m = n, or $m \neq n$ and m = t = 2.

Preliminaries

Introduction

Setting 2.1

- (R, \mathfrak{m}) a Cohen-Macaulay local ring with $d = \dim R$
- $|R/\mathfrak{m}| = \infty$
- \bullet \exists K_R the canonical module of R

Definition 2.2

We say that R is an almost Gorenstein local ring, if \exists an exact sequence

$$0 \rightarrow R \rightarrow K_R \rightarrow C \rightarrow 0$$

of R-modules such that $\mu_R(C) = e_m^0(C)$.

$$0 \rightarrow R \rightarrow K_R \rightarrow C \rightarrow 0$$

of R-modules. If $C \neq (0)$, then C is Cohen-Macaulay and $\dim_R C = d - 1$.

Set $\overline{R} = R/[(0):_R C]$.

Then $\exists f_1, f_2, \dots, f_{d-1} \in \mathfrak{m}$ s.t. $(f_1, f_2, \dots, f_{d-1})\overline{R}$ forms a minimal reduction of $\overline{\mathfrak{m}} = \mathfrak{m}\overline{R}$. Therefore

$$e_{\mathfrak{m}}^{0}(C) = e_{\mathfrak{m}}^{0}(C) = \ell_{R}(C/(f_{1}, f_{2}, \ldots, f_{d-1})C) \geq \ell_{R}(C/\mathfrak{m}C) = \mu_{R}(C).$$

Thus

$$\mu_R(C) = e_{\mathfrak{m}}^0(C) \iff \mathfrak{m}C = (f_1, f_2, \dots, f_{d-1})C.$$

Hence C is a <u>maximally generated maximal Cohen-Macaulay \overline{R} -module</u> in the sense of B. Ulrich, which is called <u>an Ulrich R-module</u>.

Preliminaries

Lemma 2.3

Let R be an almost Gorenstein local ring and choose an exact sequence

$$0 \to R \xrightarrow{\varphi} \mathsf{K}_R \to C \to 0$$

of R-modules s.t. $\mu_R(C) = e_m^0(C)$. If $\varphi(1) \in \mathfrak{m} K_R$, then R is a RLR.

Therefore

$$\mu_R(C) = \mathrm{r}(R) - 1$$

provided R is not a RLR.

Corollary 2.4

Let R be an almost Gorenstein local ring but not Gorenstein. Choose an exact sequence

$$0 \to R \xrightarrow{\varphi} K_R \to C \to 0$$

of R-modules s.t. C is an Ulrich R-module.

Then

$$0 \to \mathfrak{m}\varphi(1) \to \mathfrak{m}\,\mathsf{K}_R \to \mathfrak{m}\,\mathsf{C} \to 0$$

is an exact sequence of R-modules.

Hence

$$\mu_R(\mathfrak{m} \mathsf{K}_R) \leq \mu_R(\mathfrak{m}) + \mu_R(\mathfrak{m} \mathsf{C}).$$

Survey on the resolution of determinantal rings

Setting 3.1

- t > 1, m > n > 1 integers
- (S, \mathfrak{n}) a Noetherian local ring s.t. $\mathbb{Q} \subseteq S$
- F, G free S-modules with $rank_S F = m + t 1$, $rank_S G = n + t 1$
- $\phi = (r_{ii}) : F \to G$ a S-linear map s.t. $r_{ii} \in \mathfrak{n}$

Let $\lambda(m,n)$ be the Young tableau consisting of rectangle of n rows of m squares, where the i-th row contains the numbers $(i-1)m+1, (i-1)m+2, \ldots, im$ in increasing order.

$$\lambda(m,n) = \begin{array}{c|cccc} 1 & 2 & \dots & m-1 & m \\ \hline m+1 & m+2 & \dots & 2m-1 & 2m \\ \hline \vdots & \vdots & \ddots & \vdots & \vdots \\ \hline & & & & & & & mn \end{array}$$

- k an integer s.t. $0 \le k \le mn$
- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ a partition of k s.t. $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, $\sum_{i=1}^n \lambda_i = k$, and $\lambda_i < m$ for $1 < \forall i < n$

Definition 3.2

Introduction

We define the tableaux λ_F , λ_G as follows.

- The *i*-th column of λ_F consists of λ_i squares which contain the numbers of the (n-i+1)-th row of $\lambda(m,n)$ in reverse order.
- λ_G is the tableau derived from $\lambda(m,n)$ by removing the numbers of λ_F .

Example 3.3

Consider the case where m=4, n=3, k=5, and $\lambda=(3,2,0)$. Then

To the square in the (i,j) position of $\lambda(m,n)$ we associate:

- The square in the (i,j) position of $\lambda(m,n+t-1)$ if j-i>m-n.
- The string of t squares from the (i,j) position to the (i+t-1,j) position if j-i=m-n.
- The square in the (i + t 1, j) position if j i < m n.

Example 3.4

Consider the case where m=4, n=3, k=5, $\lambda=(3,2,0)$, and t=3. Then

《日》《部》《思》《思》 · 臣

Definition 3.5

Introduction

We define the tableaux $\lambda_F(t)$, $\lambda_G(t)$ as follows.

- $\lambda_F(t)$ is the tableau constructed by replacing each square of λ_F by the associated square or string of squares of $\lambda(m, n+t-1)$.
- $\lambda_G(t)$ is the tableau obtained from $\lambda(m, n+t-1)$ by removing the squares of $\lambda_F(t)$.

Example 3.6

Consider the case where m=4, n=3, k=5, $\lambda=(3,2,0)$, and t=3. Then

$$\lambda_F = \begin{array}{c} 12 & 8 \\ 11 & 7 \\ 10 \end{array}$$

$$_{F}(t) = egin{array}{cccc} 12 & 8 \\ 16 & 7 \\ 20 & 1 \\ 19 & 1 \\ 18 & \end{array}$$

NAOKI TANIGUCHI (Meiji University)

Definition 3.7

We put

Introduction

$$C_k = C_k(t) = \sum_{|\lambda|=k} e(\lambda_F(t))F \otimes_S e(\lambda_G(t))G$$

Survey on the resolution

for every 0 < k < mn, where

$$e(\lambda_F(t))F := e(\lambda_F(t))(F \otimes_S F \otimes_S \cdots \otimes_S F)$$

$$e(\lambda_G(t))G := e(\lambda_G(t))(G \otimes_S G \otimes_S \cdots \otimes_S G).$$

Therefore

$$0 \rightarrow C_{mn} \rightarrow C_{mn-1} \rightarrow \cdots \rightarrow C_1 \rightarrow C_0 \rightarrow S/I_t(\phi) \rightarrow 0$$

gives a minimal S-free resolution of $S/I_t(\phi)$.

Introduction

References

How to compute the rank of C_k

- Find all partitions λ with $|\lambda| = k$.
- Find the Young diagrams $\lambda_F(t)$, $\lambda_G(t)$.
- Compute the ranks of $e(\lambda_F(t))F$, $e(\lambda_G(t))G$

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ be a partition, H a free S-module of rank $r \ge 0$. Let

Survey on the resolution

$$\Delta(x_1, x_2, \ldots, x_r) = \prod_{i < j} (x_i - x_j)$$

where $x_1, x_2, \ldots, x_r \in \mathbb{Z}$.

Put $\ell_i = \lambda_i + r - 1$ for 1 < i < r. Then

$$\mathrm{rank}_S e(\lambda) H = \frac{\Delta(\ell_1,\ell_2,\ldots,\ell_r)}{\Delta(r-1,r-2,\ldots,0)}.$$

Proposition 3.8

Introduction

There are equalities

$$\operatorname{rank}_{S} C_{mn} = \frac{\prod_{j=0}^{m-n-1} \left(\prod_{i=0}^{n-1} (t+i+j) \right) 1! \cdot 2! \cdots (n-2)! \cdot (n-1)!}{(m-n)! \cdot (m-n+1)! \cdots (m-2)! \cdot (m-1)!}$$

$$\operatorname{rank}_{S}C_{mn-1} = \frac{\prod_{j=0}^{m-n-1} \left(\prod_{i=1}^{n-1} (t+i+j)\right) \prod_{i=0}^{m-n-2} (t+i) (t+m-1) 1! \cdot 2! \cdots (n-2)! \cdot n!}{(m-n-1)! \cdot (m-n+1)! \cdot (m-n+2)! \cdots (m-2)! \cdot (m-1)!}$$

provided $m \neq n$.

Preliminaries

Theorem 1.5

Suppose that k is a field of characteristic 0. Then TFAE.

- (1) $k[X]/I_t(X)$ is an almost Gorenstein graded ring.
- (2) $k[[X]]/I_t(X)$ is an almost Gorenstein local ring.
- Either m = n, or $m \neq n$ and m = t = 2.

In what follows, let

- k a field of characteristic 0
- S = k[[X]]
- $R = S/I_t(X)$
- $\mathfrak{m} = (x_{ii} \mid 1 \leq i \leq m, \ 1 \leq i \leq n)$ the maximal ideal of R

Let

$$0 \to F \to G \to \cdots \to S \to R \to 0 \qquad (\sharp)$$

be a minimal S-free resolution of R. Then

Preliminaries

$$\operatorname{rank}_{S} F = \frac{\prod_{j=0}^{n-m-1} \left(\prod_{i=0}^{m-t} (t+i+j) \right) 1! \cdot 2! \cdots (m-t-1)! \cdot (m-t)!}{(n-m)! \cdot (n-m+1)! \cdots (n-t-1)! \cdot (n-t)!}$$

Moreover

$$\operatorname{rank}_S G = \frac{\prod_{j=0}^{n-m-1} \left(\prod_{i=1}^{m-t} (t+i+j) \right) \prod_{i=0}^{n-m-2} (t+i) \cdot n \cdot 1! \cdot 2! \cdots (m-t-1)! \cdot (m-t+1)!}{(n-m-1)! \cdot (n-m+1)! \cdot (n-m+2)! \cdots (n-t-1)! \cdot (n-t)!}$$

provided $m \neq n$.

Take the K_S -dual of (\sharp), we get the presentation

Preliminaries

$$G \rightarrow F \rightarrow K_R \rightarrow 0$$

of R-modules so that

$$\mu_R(\mathfrak{m} \mathsf{K}_R) \geq mn \cdot \mathrm{r}(R) - \mathrm{rank}_S G.$$

Let

$$\alpha = \frac{\prod_{j=0}^{n-m-1} \left(\prod_{i=1}^{m-t} (t+i+j) \right) \prod_{i=0}^{n-m-2} (t+i) \cdot 1! \cdot 2! \cdots (m-t-1)! \cdot (m-t)!}{(n-m-1)! \cdot (n-m+1)! \cdot (n-m+2)! \cdots (n-t-1)! \cdot (n-t)!}.$$

Then

$$r(R) = \frac{t+n-m-1}{n-m} \cdot \alpha$$
, $rank_S G = n \cdot (m-t+1) \cdot \alpha$

Preliminaries

We may assume that $m \neq n$. Since R is an almost Gorenstein local ring, \exists an exact sequence

$$0 \rightarrow R \rightarrow K_R \rightarrow C \rightarrow 0$$

of R-modules s.t. $C \neq (0)$ is an Ulrich R-module.

Then

$$0 \to \mathfrak{m} \to \mathfrak{m} \, \mathsf{K}_R \to \mathfrak{m} \, C \to 0$$

whence

$$\mu_R(\mathfrak{m} \,\mathsf{K}_R) \leq \mu_R(\mathfrak{m}) + \mu_R(\mathfrak{m} \,\mathcal{C})$$

$$\leq mn + (d-1)(r(R)-1)$$

because $\mathfrak{m} C = (f_1, f_2, \dots, f_{d-1})C$ for $\exists f_i \in \mathfrak{m}$.

Therefore

$$mn \cdot r(R) - rank_S G \le \mu_R(\mathfrak{m} K_R) \le mn + (d-1)(r(R)-1)$$

which yields that

$$(mn-(d-1))(r(R)-1) \leq \operatorname{rank}_{S} G.$$

Hence

$$\{(m-(t-1))(n-(t-1))+1\}\left(\frac{t+n-m-1}{n-m}\cdot\alpha-1\right)\leq n(m-(t-1))\alpha.$$

Then a direct computation shows that t=2, whence m=2 as desired.

Thank you so much for your attention.

- [1] H. BOERNER, Representations of groups, North-Holland Publishing Company, 1963.
- [2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
- [3] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, 1327, Springer-Verlag, Berlin, 1988.
- [4] S. GOTO, R. TAKAHASHI AND N. TANIGUCHI, Almost Gorenstein rings -towards a theory of higher dimension, J. Pure Appl. Algebra, 219 (2015), 2666–2712.
- [5] P. ROBERTS, A minimal free complex associated to the minors of a matrix, Preprint 1978.

Setting 5.1

Introduction

- $R = \bigoplus_{n>0} R_n$ a Cohen-Macaulay graded ring with $d = \dim R$
- \bullet (R_0, \mathfrak{m}) a local ring
- \bullet \exists the graded canonical module K_R
- \bullet $M = \mathfrak{m}R + R_{\perp}$

Definition 5.2

We say that R is an almost Gorenstein graded ring, if \exists an exact sequence

$$0 \to R \to \mathsf{K}_R(-\mathbf{a}(R)) \to C \to 0$$

of graded R-modules such that $\mu_R(C) = e_M^0(C)$.

Notice that

- R is an almost Gorenstein graded ring $\implies R_M$ is an almost Gorenstein local ring.