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Introduction

Introduction

@ 2 <t < m< nintegers

@ X = [Xj] an m x n matrix of indeterminates over an infinite field k
@ S=k[X]=k[Xj|1<i<m1< < n]the polynomial ring

@ I;(X) the ideal of S generated by the t x t minors of the matrix X
@ R=S5/I;(X)

Fact 1 ([2, 3])
@ R is a Cohen-Macaulay normal domain
@ dmR=mn—(m—(t—1))(n—(t—1))
@ Kr=Q" " (—(t—1)m)

where Q@ =1;,_1(Y)R and Y = [Xj] is an m x (t — 1) matrix obtained from X by
choosing the first t — 1 columns.

V.
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Introduction

Therefore R is level, a(R) = —(t — 1)n, and

R is Gorenstein <= m = n.
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Introduction

Therefore R is level, a(R) = —(t — 1)n, and

R is Gorenstein <= m = n.

Question 1.1
When do the determinantal rings satisfy almost Gorenstein property?
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Introduction

Theorem 1.2 (Goto-Takahashi-T, 2015)

Let R = k[Ry] be a Cohen-Macaulay homogeneous ring with d = dim R > 0.
Suppose that R is not a Gorenstein ring and |k| = oo. Then TFAE.

(1) R is an almost Gorenstein graded ring and level.

(2) Q(R) is a Gorenstein ring and a(R) =1 —d.

Corollary 1.3

R = S/1:(X) is an almost Gorenstein graded ring <= m = n, or m # n and
m=t=2.
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Introduction

Set M = R.. Then
R = k[X]/1:(X) : AGG = Rm = (k[X]/1e(X))p - AGL
<~  K[[X]])/1:(X) : AGL
Question 1.4
Does the implication
Ry = (k[X]/1:(X))p : AGL = R = k[X]/I:(X) : AGG

hold true?
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Introduction

Theorem 1.5
Suppose that k is a field of characteristic 0. Then TFAE.

(1) R is an almost Gorenstein graded ring.

(2) Rm is an almost Gorenstein local ring.

(3) Either m=n, orm#nand m=t=2.
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Preliminaries

Preliminaries

Setting 2.1
@ (R,m) a Cohen-Macaulay local ring with d = dim R
@ |R/m| =00

@ 1 Kg the canonical module of R

Definition 2.2

We say that R is an almost Gorenstein local ring, if 3 an exact sequence

0-R—-Kr—C—0

of R-modules such that 1g(C) = €%(C).
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Preliminaries

Look at an exact sequence

0—-R—-Kr—=C—=0
of R-modules. If C # (0), then C is Cohen-Macaulay and dimg C =d — 1.
Set R = R/[(0) :r C].

Then 3 fi,f,... . fq_1 €mst. (A, f,...,fy—1)R forms a minimal reduction of
m = mR. Therefore

e?n(C) = e%(C) = KR(C/(fl, f‘2, ey fdfl)C) > KR(C/ITIC) = MR(C)

Thus
II’R(C) = eo (C) — mC = (fla f27 RN fd—l)C'

m

Hence C is a maximally generated maximal Cohen-Macaulay R-module in the

sense of B. Ulrich, which is called an Ulrich R-module.
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Preliminaries

Lemma 2.3
Let R be an almost Gorenstein local ring and choose an exact sequence

0R-2Krg—C—0
of R-modules s.t. 1r(C) = €% (C). If (1) € mKg, then R is a RLR.

Therefore

provided R is not a RLR.
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Preliminaries

Corollary 2.4

Let R be an almost Gorenstein local ring but not Gorenstein. Choose an exact
sequence

0R -2 Kr—C—0

of R-modules s.t. C is an Ulrich R-module.

Then
0— mp(l) > mKg > mC =0

is an exact sequence of R-modules.

Hence
;1R(m KR) < /IR(m) + ,LLR(nIC).
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Survey on the resolution

Survey on the resolution of determinantal rings

Setting 3.1
@ t>1, m>n>1integers
@ (S,n) a Noetherian local ring s.t. Q C S
@ F, G free S-modules with ranksF = m+t— 1, ranksG=n+1t—1

@ ¢=(rj): F— GaS-linearmaps.t. rjen
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Survey on the resolution

Let A(m, n) be the Young tableau consisting of rectangle of n rows of m squares,
where the i-th row contains the numbers (i —1)m+1,(i —1)m+2,...,im in
increasing order.

1 2 m—-1| m

A(m,n) =
m+l | m+2 | ... |2m=1| 2m
mn
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Survey on the resolution

@ kanintegers.t. 0 < k< mn

o \= ()\1,)\2,...,)\,,) a partition of kst. Ay > X >---2> A, 27:1 i =k,
and \; < mfor1<Vi<n

Definition 3.2
We define the tableaux Ag, Ag as follows.

@ The i-th column of Ar consists of A; squares which contain the numbers of
the (n — i + 1)-th row of A\(m, n) in reverse order.

@ )\ is the tableau derived from A(m, n) by removing the numbers of Af.

Example 3.3
Consider the case where m=4, n=3, k=5, and A = (3,2,0). Then

3]4]

A(m, n) = 112]3)4 , AF = 12| 8 , and A\g =
51678 11
10(11{12 10

"er—l
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Survey on the resolution

To the square in the (i, ) position of A(m, n) we associate:

@ The square in the (i, ) position of \(m,n+t —1)if j —/ > m— n.

@ The string of t squares from the (i, ) position to the (i + t — 1, j) position
if j—i=m—n.

@ The square in the (i +t — 1, ) position if

Example 3.4
Consider the case where m=4, n=3, k=5, A =(3,2,0), and t = 3. Then

A(myn+t—1)=
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Survey on the resolution

Definition 3.5
We define the tableaux \g(t), Ag(t) as follows.

@ \g(t) is the tableau constructed by replacing each square of A\ by the
associated square or string of squares of A(m,n+ t — 1).

@ \g(t) is the tableau obtained from A(m, n+ t — 1) by removing the squares
of /\F(t).

Example 3.6
Consider the case where m=4, n=3, k=5, A =(3,2,0), and t = 3. Then

, sothat Ag(t) = Therefore A\g(t) =
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Survey on the resolution

Definition 3.7

We put
Cp = Ci(t) = Z e(Ae(t))F ®s e(Ag(t))G
IA|=k
for every 0 < k < mn, where
e(Ae(t)F = e(Ar(t))(F®s FR®s---®s F)
e(Ag(t))G = e(Xc(t))(CG®s G®s - ®s G).

Therefore
0= Con—= Cune1 == G = G — S/T(6) = 0

gives a minimal S-free resolution of S/I;(¢).
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Survey on the resolution

How to compute the rank of C,
@ Find all partitions A\ with |A| = k.
@ Find the Young diagrams Ag(t), Ag(t).
@ Compute the ranks of e(Ae(t))F, e(Ag(t))G

Let A = (A1, A2, ..., A,) be a partition, H a free S-module of rank r > 0. Let
Alx, X0, ...y X ) = H(X,' - Xj)
i<j
where x1, X0, ..., %, € Z.
Putl;=Xi+r—1for1<i<r. Then

A(£17£27 s 7£r)

k H= '
ran 56‘()\) A(r—1,r—2,...,0)
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Survey on the resolution

Proposition 3.8

There are equalities

m—n—1 —
11 (H t+ i +J> 2 (n=2)1 - (n—1)!
=0

Jj=0

(m=n)l-(m—n+1)!---(m=2)-(m-1)!

ranksCpp =

m—n—1 /n—1 m—n—2
11 <H(t+i+j)> IT t+d(t+m=—1)11-21---(n=2)1-n

j=0 i=1 i=0

ranksCmn—1 = (m—n—1l - (m—ntD)l-(m—nt2)--(m—2)!-(m—1)

provided m # n.
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Proof of Theorem 1.5

Proof of Theorem 1.5

Theorem 1.5
Suppose that k is a field of characteristic 0. Then TFAE.

(1) k[X]/I:(X) is an almost Gorenstein graded ring.
(2) K[[X]]/1:(X) is an almost Gorenstein local ring.

(3) Either m=n, orm=#nand m=t=2.

In what follows, let
@ k a field of characteristic 0
® S = K[X]]
@ R=S5/I,(X)

@ m=(x;|1<i<m, 1< <n)the maximal ideal of R
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Proof of Theorem 1.5

Let
0O-F—>G—---—-5—=R—=0 (1)

be a minimal S-free resolution of R. Then

n—m—1 /m—t
<H(t+i+j)> -2l (m—t—1)- (m—1t)!
=0

j i=0
(n=m)!-(n—m+1)l---(n—t—=1)! - (n—1t)!

ranksgF =

Moreover

n

_ﬁ_ <m_ (t+i+1)> n_ﬁ_ (t+i) n-10-20 (m—t—1)l- (m—t +1)!
i=0

j=0 \i=1
(in—m-=--(n—m+1)-(n—m+2)---(n—t—=1)l-(n—1t)!

i

ranksG =

provided m # n.
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Proof of Theorem 1.5

Take the Ks-dual of (), we get the presentation
G—>F—=-Krp—0
of R-modules so that

ur(mKg) > mn-r(R) — ranksG.

Let
n—m—1 /m—t n—m—2
11 (H(t+i+j)) IT e+i-1-20 o (m—t—1)1- (m—t)!
_j=0 i=1 i=0
T T S m oDl (n—mt D) (n—mt2) - (n—t—1) (n— o)
Then

7t+n7m71

n—m

r(R) a, ranksG=n-(m—-t+1) «
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Proof of Theorem 1.5

Proof of Theorem 1.5

We may assume that m # n. Since R is an almost Gorenstein local ring, 3 an
exact sequence
0—-R—-Kr—=C—=0

of R-modules s.t. C # (0) is an Ulrich R-module.

Then
0—-m—->mKgr—>mC—0

whence

pr(mKg) < pgr(m)+ pr(mC)
< mn+(d-1)(r(R)-1)

because mC = (f1, fo,...,f4—1)C for 3 f; € m.
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Proof of Theorem 1.5

Proof of Theorem 1.5

Therefore
mn-1(R) —ranksG < pr(mKg) < mn+ (d — 1)(r(R) — 1)
which yields that
(mn—(d—1))(r(R) — 1) < ranksG.
Hence

t+n—m-—1
n—m

{(m—(t—l))(n—(t—l))+1}< -a—l)ﬁn(m—(t—l))a.

Then a direct computation shows that t = 2, whence m = 2 as desired.
Cl
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Proof of Theorem 1.5

Thank you so much for your attention.
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Setting 5.1
@ R= @nzo R, a Cohen-Macaulay graded ring with d = dim R
@ (Rp,m) a local ring
@ T the graded canonical module Kg

@ M=mR+R,

Definition 5.2

We say that R is an almost Gorenstein graded ring, if 3 an exact sequence

0— R— Kg(—a(R)) = C—0

of graded R-modules such that pr(C) = €%,(C).

Notice that
@ R is an almost Gorenstein graded ring
= Ry is an almost Gorenstein local ring.
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